Látás vörös árnyalattal


A csapok a látható fénytartomány bizonyos szeleteire érzékenyek, viszont csak a beérkező fény mennyiségéről látás vörös árnyalattal információt az idegrendszernek, a beérkező fény hullámhosszáról nem. Az emberek számára a látható színtartományt hozzávetőlegesen a - nm hullámhosszú elektromágneses sugárzás jelenti. Ezt a színtartományt az emberi szem három különböző típusú csappal fedi le, más fajoknál mind a látható színtartomány, mind a csapok száma eltérő.

Példának okáért, egy piros szoknya nem piros színt sugároz ki. Inkább azt mondhatnánk, hogy elnyeli az ember számára látható fénytartomány minden frekvenciájátkivéve a piros érzetet keltő frekvenciákat.

Egy tárgy színe fajspecifikus szubjektív élmény, nem pedig a tárgy fizikai tulajdonsága. A színek egységei[ szerkesztés ] Isaac Newton volt az első, aki a prizmán áthaladó, a spektrális színekre vagyis a szivárvány színeire bomló napfénynyaláb jelenségével először érdemben foglalkozott.

Megmutatta, hogy ha a spektrum színei közül kiválasztunk egyet például a sárgátés rávetítjük egy megfelelő színtartományra sárga esetén ez nagyjából a nm-es tartomány kékakkor fehéret látunk. Bármely két spektrális összetevőt, látás vörös árnyalattal elmondható, hogy ha összeadjuk őket, fehéret kapunk, komplementernek kiegészítő nevezzük.

látás vörös árnyalattal iszkakov nem látható

Egy átlagos emberi szem több száz színárnyalatot képes megkülönböztetni, rövidlátás normális szemformával a spektrális színek különböző arányú összegéből képződnek. Newton hét spektrális alapszínt feltételezett a tudomány mai álláspontja szerint helytelenül abból kiindulva, hogy a látás és a hallás szoros kapcsolatban áll a zenei skála is oktávonként hét hangból áll.

A hét ék alakú körcikk mindegyike egy-egy spektrális színt ábrázol, ezekre Newton többféle szabályt is kidolgozott. Newton hét körcikke azt a vélekedését tükrözi, miszerint hét különálló tiszta színnek kell léteznie.

Ez most piros vagy rózsaszín?

Ma már tudjuk, hogy ez nem így van, ezért a Newton féle színkört Johannes Itten módosította úgy, hogy a komplemeter színpárok egymással szemben legyenek, és a kör közepére pedig a fehér szín kerüljön.

Ezen a színkörön már látható, hogy a színek nem neveik, hanem hullámhosszuk szerint rendezettek, de nem egyformán oszlanak el a színkörön mivel vannak olyan hullámhosszok, amelyeknek nincsenek komplementer kiegészítőik.

látás vörös árnyalattal a narbek látásának helyreállítása

Háromszín-elmélet[ szerkesztés ] Newtont követően - és Newton elképzelésével szemben - egyre több olyan elmélet látott napvilágot, mely szerint három megfelelően kiválasztott alapszínből valamennyi szín kikeverhető. Thomas Young angol orvos és fizikus ben kifejtette, hogy a színlátás háromszín természetének élettani alapjai vannak, és a színérzékelés a szemben elhelyezkedő háromféle receptor ingerlési mintázatainak eredményeként jön létre.

A három alapvető színérzéklet, a piros, a zöld és az ibolyaszín az idegrendszer elkülönült elemei. Hermann Ludwig von Helmholtz Young elméletét ötven évvel később Hermann Ludwig von Helmholtz fejlesztette tovább, és Young-Helmholtz-elméletként, illetve háromszín-elméletként vált ismertté.

Helmholtz a látás helyreállítása herpeszes keratitis után a szemben látás vörös árnyalattal, ma már csapokként ismert színreceptor van, melyek a látható fény hosszú pirosközepes látás vörös árnyalattal vagy rövid kék hullámhosszúságú tartományába eső fényre érzékenyek.

A látás vörös árnyalattal receptor együtt határozza meg a színérzékelést. Ellenszínelmélet[ látás vörös árnyalattal ] Ewald Hering ben terjesztette elő ellenszínelméletét, mely szerint négy alapszín létezik: kékvöröszöld és a sárga.

  • Ez most piros vagy rózsaszín? - HáziPatika
  • Okai[ szerkesztés ] A színtévesztés genetikai okokból elsősorban a férfiakat sújtja: a férfiak mintegy nyolc százaléka színtévesztő, a nők közt ez az arány csak 0,2 százalék.
  • Antropológiai tudatlátás
  • Görög szavakból összetett: kromo- színes ; sztereo- térbeli ; szkóp nézéssel, látással kapcsolatos Ha a látványban élénk vörös és zöldeskék színfolt kerül közvetlenül egymás mellé, a két szín határvonala igen kellemetlenül vibrál.

A vörös és a zöld, a sárga és a kék ellentétes színek, ugyanis nem észlelhetők egyszerre. Sohasem látunk vöröseszöldet vagy sárgáskéket, hiszen a vörös és zöld keverékét sárgának, a kék és a sárga keverékét pedig fehérnek látjuk.

Protanopia

Hering szerint látórendszerünk kétféle színérzékeny egységet tartalmaz, az egyik a zöldre vagy a vörösre, a másik a kékre vagy a sárgára válaszol. A két egység másképp kezeli a színeket: a vörös-zöld rendszer például növeli aktivitását vörös szín hatására, zöld színnél pedig csökkenti. A sárga-kék egység növeli válaszgyakoriságát, ha kék inger stimulálja, és csökkenti, ha sárga.

Hering elmélete a negatív utókép jelenségére is magyarázatot ad. Ha vörös képet nézünk és kifárasztjuk a rendszer vörös válaszát, akkor a vörös-zöld egység zöld összetevője nagyobb aktivitást fog mutatni, ha fehér felületre nézünk zöld képet látunk.

Tehát az ellenszínt észleljük, ha egy ideig egy bizonyos színárnyalatú ingernek vagyunk kitéve. Ez megfelel annak az elképzelésnek, miszerint a látórendszer bizonyos színeket ellentétes párként kezel.

látás vörös árnyalattal hogyan lehet kanállal helyreállítani a látást

A háromszín-elmélet és az ellenszínelmélet sok éven keresztül versengett egymással, míg fel nem vetették, hogy egyesíthetők egy olyan kétszintű elméletben, melyben a háromszín-elmélet a receptorok szintjén, az látás vörös árnyalattal pedig magasabb szinteken érvényes.

A színek három dimenziója[ szerkesztés ] Az észlelt színeket általában három dimenzió mentén jellemezzük. A színárnyalat a színek nevével leírt minőségre utal, azt a tulajdonságot jelöli, amely elkülöníti például a vöröset, a zöldet, a kéket, stb. Az élénkség a színes felületről visszaverődő fény mennyiségét jelzi. A telítettség a fény tisztaságát jelenti.

Ki kapcsolódni? A színek világának megnézése lehetővé teszi a vizuális rendszerünk azon képességét, hogy különböző hosszúságú, a színeknek és árnyalatoknak megfelelő fénysugárzásokat észleljenek, és a környező valóság színképének holisztikus értelemben alakítsák át őket. A színeket nem megkülönböztető személyeket színvaknak nevezik. Ez általános tudás. És protanópia?

A telített színek nem tartalmaznak szürkét, a telítetlen színek - például a rózsaszín - a vörös és a fehér keverékének tűnnek. A színészlelés mechanizmusa[ szerkesztés ] Newton megmutatta, hogy a fény és a szín összetett kapcsolatban vannak egymással, és hogy különböző színek, hullámhosszak összetétele ugyanahhoz a színélményhez vezet.

Ezen színélmények kialakítását az élőlények idegrendszere több lépésben állítja elő.

Első lépésben a csap típusú vizuális receptorok fényérzékeny pigmentjei végzik a feldolgozást, majd ezek információit a retinális ganglionok továbbítják az oldalsó genikulátus maghoz corpus geniculatum lateralea végső színélményt pedig még magasabb szintű vizuális központok adják.

Az egyes fázisokban megfigyelhető észlelési állapotokra egy-egy, egymást kiegészítő elmélet létezik.

A színek észlelése: az ellenszínelmélet A színlátásról eddig leírtak látás vörös árnyalattal vonása, hogy az agyról, a látórendszerről, az idegi feldolgozásról nincs bennük szó vagy csak az említés szintjén. A szuperpozíció, színegyezés, fizikai színkeverés és az átlagtól eltérő színlátás esetei mind olyan jelenségek, melyeket alapvetően fotoreceptoraink fényérzékenysége határoz meg. A továbbiakban viszont már a színlátás agyi mechanizmusait, valamint a látott színek észlelési struktúráját tárgyaljuk. A színek észlelésével kapcsolatos alapvető jelenségek Az emberi színlátásnak számos olyan vonása van, amely független annak háromszín-jel- legétől, nem következik abból. Sőt ezek a vonások olyanok, hogy legtöbbjüket egy laikus, de elmélyült megfigyelő is felismerheti.

A trichromatikus elmélet a retinális feldolgozást modellezi, az opponens elmélet pedig a corpus geniculatum laterale neuronjainak működését írja le. Az emberi látás során a fény hullámhosszát először három, spektrálisan széles és egymást nagymértékben átfedő csapfotopigment elemzi.

Ezek eredményei azután a kromatikus és az akromatikus csatornákat táplálja. Monokromáttól a trikromát látásig[ szerkesztés ] A fotopigmentek látás vörös árnyalattal tesznek egyes hullámhosszok között úgy, hogy bizonyos hullámhosszú fényeket hatékonyabban nyelnek el, de bármilyen hullámhosszú is az elnyelt fény, ugyanazt az eseményt idézi elő a vizuális receptorban. Vagyis a receptor válaszát csupán az elnyelt fény mennyisége határozza meg, nem szolgál információval az elnyelt fény hullámhosszáról.

Ez az univariancia elve. Az ilyen szemet monokromátnak nevezzük. Félhomályban minden ember monokromát látásúmert a csap típusú receptorai nem reagálnak a gyenge fényre, csak a pálcikái segítségével építi fel idegrendszere a látott képet, ami ennek következtében szürkeárnyalatos lesz.

A két típusú fotopigmenttel rendelkező dikromát szem várhatóan jobban disztingvál, mivel a kétpigmentes rendszerben nem egy, hanem kétféleképpen nyilvánul meg az elnyelt energia.

Vörös-zöld színtévesztés, vörös-zöld színvakság és teljes színvakság

Az egyes fotopigmentek válasza ebben az esetben is attól függ, milyen a fényelnyelési karakterisztikája a pigmentnek az adott hullámhosszú fényre. Így bármely hullámhossz egy válaszpárt fog kiváltani, ami jelen esetben is függ a fényerősségtőlellenben arányaik függetlenek ettől hiszen mindkét válasz a fényerősség hatására ugyanolyan mértékben változik, ezért hányadosuk nem függ a fényerősség -változástól.

Így a bikromát szem néhány hullámhossz információt ki tud vonni a fényből. Ellenben könnyen összezavarható is, hiszen egy adott válaszpár aránya elérhető különféle hullámhosszú fények összetételével. Három csappigment esetén minden hullámhossz egy válaszhármast generál, a különböző csappigmentek fényelnyelési képességének megfelelően.

Ideális karakterisztikával rendelkező fotopigmenthármas esetén ezek válasza csak bizonyos hullámhossz összetételű fénnyel érhető el. Egy ilyen fotopigmenthármast tartalmazó szemet trikromátnak nevezünk, ilyen az emberi szem is. Ezt — vagyis, hogy a színészlelés három eltérő pigment válaszával kezdődik látás vörös árnyalattal ember esetén is - Young-Heimholtz elméletnek nevezzük, alkotóik után: Hermann von Helmholtz német pszichológus és Thomas Young angol orvos egyszerre alkották meg a fenti teóriát.

Csappigmentek[ szerkesztés ] Az emberi szemben alapvetően három eltérő csaptípus létezik, [5] melyek fényelnyelési tulajdonságát mikro-spektrofotometriával térképezték fel egy csapot adott hullámhosszú fénysugárral ingerelve meghatározhatjuk, hogy mennyi fény abszorbeálódik a sugárzottból.

Minden pigmenttípus egy bizonyos hullámhosszú fényre a legérzékenyebb, az ember három csapja esetén ez megközelítőlegés nm -nél van.

Az érzékenységi maximumok szerint három csaptípust különítünk el: a rövidhullám-érzékenyeket S csapoka középhullám-érzékenyeket M csapok és a hosszúhullám-érzékenyeket L csapok. Egy adott típusú csap a hullámhosszak széles tartományát nyeli el, de ezek a tartományok — különösen az M és az L csapok esetén — erősen átfedik egymást. Ezért a gyakran emlegetett elmélet, miszerint adott csaptípus csak egy adott színre érzékeny S csapok a kékre, M csapok a zöldre, L csapok a vörösrehelytelen.

Az S csapok kis számban vannak jelen a foveán, majd hirtelen a maximális koncentrációjukat érik el, s a látógödörtől fovea centralis, az éleslátásért felelős terület távolodva — az M és L csapokhoz hasonlóan — számuk körben csökken a középpontól távolodva.

Dikromatikus színlátás

Az L és M csapok a látógödörben vannak nagy számban. Kromatikus és az akromatikus rendszer[ szerkesztés ] Az akromatikus és kromatikus csatornák A három csaptípustól eredő jeleket válaszhármasokat egy akromatikus és két kromatikus rendszer dolgozza fel.

A képen látható nyilak az egyes csatornatípusok fényelnyelése során keletkező jelet mutatják. Az akromatikus csatornában az L és az M csapok összegződnek, vagyis a csatorna aktivitása látás vörös árnyalattal L és M csapok összaktivitásától látás vörös árnyalattal, ezzel elvesztve a hullámhossz-információt [8] A kék-sárga csatorna, az első kromatikus rendszer, a képnek megfelelően az S csapok [9] jelzéseit az L és az M csapok aktivitásának összegéhez hasonlítja.

A másik kromatikus csatorna, a vörös-zöld csatorna, az M csapok ingerlésének valamint az L és M csapok ingerlésének különbségét jelzi.